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Cruickshank's analysis of the rigid-body motion of molecules in crystals in terms of two symmetric 
tensors, one for libration and one for translation, has been widely adopted in the interpretation of the 
results of anisotropic refinements of the structures of molecular crystals. In recent years it has been 
recognized by several people that this treatment is inadequate when there is no pre-ordained center of 
libration (e.g. a center of symmetry), but in each instance the two-tensor description of molecular 
motion has been retained, an effective center of libration has been assumed to exist, and its location 
has been sought by one means or another. 

Actually, an additional tensor (which we call S) is needed to account for correlations of libration and 
translation. For a molecule at a sufficiently unsymmetrical site, S has eight independent components, 
one of its diagonal elements being arbitrary, and the contribution to the anisotropic displacement tensors 
by the rigid-body part of the enormously various actual motions can be described in terms of six un- 
correlated simple motions: the three familar principal mean-square translations plus three screw 
(helical) motions about and along three mutually perpendicular, non-intersecting axes. 

The problem of fitting the observed atomic displacement tensors in terms of rigid-body translation 
and screw motion involves in the general case a least-squares fit of twenty independent parameters. If 
the molecule is at a symmetrical site, some or all of the components of S are subject to special restric- 
tions; for example, if the site-symmetry is i,  S vanishes completely and the treatment is identical with 
Cruickshank's. In any event, the fit is always independent of the origin assumed in the description of 
the motion and is found by a straightforward linear least-squares process. Corrections to intramolecular 
interatomic distances foreshortened by rigid-body motion are shown to depend only on the libration 
tensor, which is independent of the assumed origin. 

Examples of the application of this analysis are given. 
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Introduction 

Cruickshank 's  (1956a) t reatment of  the rigid-body mo- 
tion of molecules in crystals in terms of two symmetric  
tensors, for l ibration and translation, has been widely 
adopted in the interpretation of the results of  aniso- 
tropic refinements of  crystal structures. It is inadequate,  
however, when the l ibration axes are not constrained 
to intersect in a known point (e.g. a center of  symme- 
try), as has been recognized by Hirshfeld, Sandier & 
Schmidt  (1963), Pawley (1963), Cruickshank,  Jones & 
Walker  (1964), and presumably others as well. In each 
of these investigations, the two-tensor description was 
assumed with the understanding that the axes of libra- 
tion intersected at a point. This point  and the two 
tensors were adjusted by trial and error or by a (neces- 
sarily non-linear) least-squares method to give the best 
obtainable over-all fit between the individual atomic 
vibration tensors, U, as derived in the X-ray analysis 

* This work was supported in part by the Directorate of 
Chemical Sciences of the U.S. Air Force Office of Scientific 
Research under Grant  AF-AFOSR-240-63 and by the National 
Science Foundat ion under Grant  GB-2029. 

t Contribution no. 1967. 

and as calculated f rom the known molecular  geometry 
by the particular method in question. 

Indeed, Hirshfeld et al. only stated that the assump- 
tion of intersecting axes was ' reasonable ' ,  implying that  
it might  not be correct, and in an independent  con- 
frontation with the problem in connection with a still 
unpublished structure worked out by Dr  R.P.  Dodge, 
kinematical  intuition led us to the conviction that the 
assumption is in fact not always appropriate.  This con- 
viction and a straightforward consideration of the full 
set of  second moments  of  l ibrat ion- t ransla t ion have 
led to the following discussion of the use of the rigid- 
body postulate. 

The root of  the difficulty with the earlier at tempts 
to generalize Cruickshank 's  t reatment is that an addi- 
t ional tensor (here called S) is needed to account for 
the average quadrat ic  correlation of translat ion and 
libration. When this tensor is included in the analysis, 
the fit of  observed and calculated U's is independent  
of  the origin, al though the components  of  S and the 
translat ional  tensor, T, vary with it. It is necessary to 
establish conditions to eliminate this arbitrariness, so 
that data may be reported uniformly,  and such a con- 
dition - that S be symmetric  - is developed. This con- 
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dition can be applied after S, T, and the librational 
tensor, L, have been found (by a straightforward linear 
least-squares treatment) for any arbitrary initial origin. 
If the site of the molecule is centrosymmetric, S is iden' 
tically zero, and the analysis reduces essentially to 
Cruickshank's treatment. As shown below, S vanishes 
or is a constant - these two conditions are equivalent 
when U is evaluated, because (see below) Tr(S) is in- 
determinate - for a few other symmetries as well. 

The present approach should not be confused with 
the one used to good effect by Pawley (1964, 1966), 
in which the rigid-body assumption is made in the 
crystallographic least-squares refinement itself, so that 
instead of all the individual atomic anisotropic vibra- 
tion parameters, only the components of the over-all 
librational and translational tensors L and T and the 
coordinates of a presumed origin of libration are con- 
sidered as parameters and refined. This treatment also 
can be faulted for the failure to include S, and it would 
be substantially improved if S were incorporated and 
the illusory search for a unique origin of libration were 
correspondingly omitted. In this case the resulting lin- 
earitv of the least-squares problem would be of no great 
consequence because iteration is already essential to 
the structure-refinement process. 

Analysis of the motion* 

The most general displacement of a rigid body with a 
fixed point is a rotation about some axis through that 
point (Euler's theorem; cf. Goldstein, 1950, p. 118); the 
corresponding displacement of any other point in the 
body, originally at r relative to the fixed point, is a 
vector and is linear in r, and therefore can be expressed 
as D .  r, with D the rotational displacement tensor. The 
problem is to express D in terms of the angle 2 = I~,l 
and axis-direction k/2 of the rotation, to add to D .  r 
any translation t of the fixed point to get the total dis- 
placement u of the point of interest, and to eval- 
uate the components U~ j=u~  of its vibration tensor 
by averaging over all aspects of the motion, both k 
and t being regarded as functions of the time and/or 
the lattice position. 

In a rigid molecule, then, the instantaneous rota- 
tional displacement of an atom originally at r relative 
to an arbitrary, molecule-fixed origin is given by 

D .  r = ~, X r(sin 2)/2 
+ [ ( r .  ~,)~,-22r](1-cos 2)/22, (1) 

where'2=l~,l is the angle of rotation about an axis 
through the origin and parallel to ~,: the first term on 
the right is a component of D .  r perpendicular to both 
~, and r (Fig. 1) and the second - with r .  ~,~,-22r iden- 
tical to ~, x (~, x r) - is the remaining component, in the 
plane of E and r, perpendicular to ~,, and small com- 
pared with the first if ~, is small. If equal orthogonal 

* M a n y  symbols  and  convent ions  are used here;  for  con- 
venience, they  are summar ized  in an Appendix.  

(ordinary Cartesian) axes are assumed and the trans- 
pose ~,' of ~, is expressed as ~,' - (cqfl, 7) = (21, 22, 23), the 
rotational tensor becomes 

D = 0 - (sin 2)/2 
- -  t ~  

+ ~/~ /~2- 2,- 

o~y t7  

= 0 - -  

( - f l 2 -  72 
+(½) ~ 

a7 

~ ) fly (1 - cos  2)/22 
72-  22 

- -  i X 2  - -  7 2 -~- 0 ( ~ 3 )  . 

/~7 _~_pe/ 
(2) 

Here the remainder term, 0(23), is of the order of 23 
for 2 4 0 .  

It is useful to write D in ordinary tensor notation, 
so that D .  r is given by (D,  r)~ = Di~rj: 

Di:= - ei:~2k(sin 2)/2 + (2i2:-225tj)(1-cos 2)/22 (3) 

= - e~kRk + (½)(2~2j-- 22d~:) + 0(23). (3a) 

Here the summation convention is assumed, as it will 
be in most of this paper (capitalized subscripts will be 
used when it is to be suppressed); ei:k is the permuta- 
tion symbol, equal to + 1 for i,j, k a cyclic permutation 
of 1,2, 3, to - 1  for i , j ,k a non-cyclic permutation of 
1,2, 3, and to zero otherwise; dij is zero except for i=j,  
for which it is + 1 ; and D, e, ~,, 22, 8, and all the quan- 
tities derived from them below are ordinary Cartesian 
tensors [see e.g. Temple (1960), or Goldstein (1950), 
p. 146] - they transform like proper tensors if only 
rotations of Cartesian axis systems are allowed. Equa- 
tion (2) can also be written in a form suited equally 
to the usual crystallographic axes and reciprocal axes; 

~ - - -  ~ x r  

~ / / - - ~  ~ xr (~--~-) 

O 

Fig. 1. I l lustrat ion of  the terms in equat ion (1). 
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the results are not used here, but are stated at the end 
of the Appendix. 

If the molecule is also translated the vector distance 
t, the total displacement of the atom at r is simply 

u = D .  r + t .  (4) 

In any case, the desired mean-square displacements 
U~s=uiu ~ are then obtained easily enough by forming 
the respective products and taking the appropriate 
time-and-lattice averages. The result is 

. . . . . . . . . . . . . . . . . . .  

U~ = D~D~r~crt + (Duct~ + D~t~)r~ + t~t~ (5) 
. . . . . . . .  

= A ~ r ~ r t  + B~cr~ + t~t~ + 0(e 3) (6) 

with A ~ t  = A~kt, 2~ = 0(e), and h = 0(e), and with A and 
B as shown in Table 1.* 

In quadratic approximation, then, the U~ depend on 
the average tensors L -  Z,k, S-- ~,t, and T -  tt, all de- 
fined here in diadic notation (T~-tit-~, etc.; in matrix 

_ _ _  

notation T would be T- - t t ' )  and with L the same as 
Cruickshank's o~, as illustrated in Table 1; S is the 
new feature of the present treatment. (In view of the 
time-and-lattice averaging, the trace of S is subject to 
the Schwartz inequality Tr(S) < [Tr(L)Tr(T)]~). In prac- 
tice, it will often be best to determine U for each atom 
of the molecule, particularly when non-rigid-body vi- 

* One can also go directly f rom (;~ x r)~ = e~e2~re: 
u~ = eim~cJ.mre q- t~, and 
U~ = u~u) = eim~e~n~2m2nr~crt 

+ e~ne2.--t~r~ + e~.e2£t~r~ + tit1. corresponding  to 
Aij~ct = eim~ceynlLmn and 
Bite = etneSny q- eln~cSnt. 

brations may also be important (e.g. Lonsdale, 1961), 
rather than to follow Pawley's (1964, 1966) scheme of 
refining only the molecular rigid-body parameters in 
the primary least-squares refinement of the fit of the 
structure factors. Thus, following Cruickshank's 
(1956a) analysis, a least-squares fit of the U ts corre- 
sponding to the individual atomic anisotropic tem- 
perature factors with those calculated from the rigid- 
body approximation is made, including however the 
unsymmetrical tensor S as well as the symmetrical 
tensors L and T. (The U~j must be the Cartesian com- 
ponents of the U, unless the general tensor formulation 
indicated at the end of the Appendix is used.) The ob- 
servation equations are then based on the above expres- 
sion for U~j rearranged to the form 

U~j = G~jlaL~t + H~jkzSkz + T~S . (7) 

Table 2 gives G and H in terms of the atomic coor- 
dinates x (=  rl), y (=  r2), and z(= r3). Inclusion of S adds 
eight additional parameters, Tr(S)= Su being indeter- 
minate because only the differences S z z - S a a  (no sum- 
mation) are significant for U, as can be seen in Table 1 
(only the differences occur) and in Table 2 (the coef- 
ficients of Sxi, H~jz/, are equal and opposite in pairs). 
The resulting normal equations, not shown here, are 
formed exactly in parallel with Cruickshank's (1956a), 
the necessary derivatives being 

O U i f f c 3 L m n =  G i J m n ,  and ~Uiffc3Smn=Hi:mn. 

The normal equations are linear in the eight determin- 
able components of S and the twelve independent com- 
ponents of L and T; these equations (which can be 

Table 1. The arrays* A and B 
At i l t  Btj~ 

k l  11 22 33 23 31 12 k 1 2 3 

11 0 y2 f12 - 2 f l 7  0 0 0 - 2 y a  2fla 

22 y2 0 g2 0 - 2~y 0 27b 0 - 2gb 

33 f12 52 0 0 0 - 2 5 f l  - 2 t i c  25c 0 
23 - f i t  0 0 - 5 2  5fl 5y y c - f l b  5b - 5 c  

31 0 - 5"--7 0 5"-fl _ fl'-2 fl--7 - f la ~ a - 7 c tic 

12 0 0 - s f l  57 f17 - 7 2  7a - 7 b  f l b - s a  

* The componen t s  of  ~, and  t have been represented here as unsubscr ipted quanti t ies:  5~.~.1, fl--=/]-2, 7=23 ;  a = t l ,  b=--t2, c = t 3 .  

A ~ j k z = 2 ) ~ - ~ + D - ~ D j ; ~  for l = k + l  (mod  3), A ~ k t = 0  for  l = k + 2  (mod 3), A ~ ¢ k = O ~ O j - ~ .  

Table 2. The arrays* G and H 
G~j~z H~j~t 

k l  11 22 33 23 31 12 11 22 33 23 31 12 32 13 21 
i] 
11 0 z 2 y2 - 2y z  0 0 0 0 0 0 - 2y 0 0 0 2z  
22 z2 0 x2 0 - 2 x z  0 0 0 0 0 0 - 2z  2x  0 0 
33 y2 x 2 0 0 0 - 2 x y  0 0 0 - 2 x  0 0 0 2y  0 
23 - y z  0 0 - x 2 x y  x z  0 - x x 0 0 y 0 - z 0 
31 0 -- x z  0 x y  _ y2 y z  y 0 -- y z 0 0 0 0 -- x 
1 2  0 0 - -  x y  x z  y z  - -  z 2  - -  z z 0 0 x 0 - -  y 0 0 

* G*jla = 0 for 1 = k + 2 (mod  3). 

A C 24B - 5* 
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formed with any desired weights or even a full weight 
matrix for all the U~j of all the atoms) are in general 
readily solvable, although there will sometimes be lim- 
itations like the singularity mentioned by Cruickshank 
for circular planar molecules. We shall not discuss such 
Cases of insufficient data, except to note that Cruick- 
shank's singularity occurs also whenever all the atoms 
of a planar molecule lie along any quadratic curve. We 
shall however discuss the average motions implied by 
L, S, and T, and consider the restrictions that follow 
if the molecule occupies a symmetrical site; some re- 
sults of the application of the analysis are given later. 

Interpretation of L, S, and T 

The formulation of U in terms of L, S, and T is valid 
no matter what arbitrary origin of coordinates and 
orientation of coordinate axes happen to be used, but 
the matter is rendered more perspicuous by referring 
the symmetric tensors U, L, (S + S')/2, and T to their 
respective principal axes and regarding ( S - S ' ) / 2 ,  the 
antisymmetric part of S, as a vector by thinking ex- 
plicitly of e,jkS~g/2 instead of (S-S ' ) j~ /2  [this ubiqui- 
tous but rather delicate point is discussed very dearly 
in unusually great detail by Goldstein (1950) p. 124 if]. 
However, a shift in origin of coordinates intermixes S 
and T, leaving U and L unchanged, so that something 
has to be done to remove the arbitrary element and 
thus make possible meaningful comparison and discus- 
sion of different experimental results. A suitable device 
is to choose the origin that makes S symmetric and, 
it also happens (as shown below), minimizes Tr (T)=  
Tu, which of course is itself invariant to rotations of 
the coordinate axes. In terms of the principal axes of 
L, T, and the now symmetric S, the 21 original com- 
ponents of L, S, and T are accounted for as 3 rota- 
tional amplitudes, 3 translational amplitudes, 3 screw 
correlations (only two of them determinable), 9 angles 
of orientation of the principal-axis systems, and the 3 
coordinates of the new origin. This is a succinct de- 
scription of the motion insofar as it is defined by L, S, 
and T. However, it involves the actual averages over 
all manner of instantaneous translations and rotations, 
and it may be desired to find instead a simpler picture, 
equivalent for the quadratic approximation to U, in 
terms of a small number of independently distributed 
simple motions. In particular, it may be desired to 
eliminate as far as possible the explicit attention to 
rotation-translation correlation. This could be done by 
translating to the same new origin described above 
(which symmetrizes S), rotating the remaining S to 
principal axes, and defining three corresponding screw 
motions (two of them determinate) of pitch times mean- 
square angular amplitude chosen to account for the 
additive contribution to U of the remaining S. The 
respective rotational and translational consequences of 
these screw motions can then be subtracted from L 
and T, and the remainders of these tensors rotated to 
principal axes. This equivalent motion would thus con- 

sist of 9 statistically independent motions - 3 rotations 
and 3 screw rotations, all about the same origin, and 
3 translations. Unfortunately, this picture is no less 
arbitrary than the original L, S, and T: although the 
origin is fixed, the pitches of the three screw rotations 
are not. 

A different description, detailed at the end of this 
section, is preferable. It is easier to picture because it 
reduces the equivalent average motion to the sum of 
6 independently distributed instantaneous motions - 
3 screw librations about non-intersecting axes and 3 
translations - and it involves the required 21 param- 
eters: 6 amplitudes, 6 angles of orientation, 6 coor- 
dinates of axis displacement, and 3 screw pitches, of 
which one has to be chosen arbitrarily. 

As mentioned above, Hirshfeld et al. (1963), Pawley 
(1963), and Cruickshank et al. (1964) have attempted 
to find effective rotational centers for molecules in sites 
of low symmetry,* correctly rejecting the possible in- 
ference from Cruickshank's (1956a) discussion that the 
(known) center of mass would always be the effective 
center of rotation. We are not aware of any previous 
treatment of the crystallographic problem in which it 
was recognized that the effective axes of libration might 
not intersect, or that the general motion is helical rather 
than simply rotational, but C.K.Johnson and H.A.  
Levy have brought to our attention Brenner's com- 
pletely independent analysis of a superficially quite dif- 
ferent problem [latest paper: Coupling between the 
Translational and Rotational Brownian Motions o fR ig id  
Particles o f  Arbitrary Shape, Brenner (1967)]. It is re- 
markably similar to this one in many details, and some 
readers of the present treatment have enjoyed follow- 
ing both in parallel. 

It is hardly necessary to detail the rotations to prin- 
cipal axes, for which we have used standard matrix 
operations, because all follow the pattern of replacing 
r by f2r and U by 12Uf2', with/2 an orthogonal matrix. 
However, the systematic shift in origin and the dis- 
placements of nonintersecting axes merit explicit atten- 
tion. The calculations run as follows. 

* The problem of achieving a least-squares fit of L, S, and 
T to the U's is linear, whereas the incomplete one ignoring S 
but including an unknown center, as formulated by Hirshfeld 
et al. and Pawley, is not. The two problems therefore have an 
essential difference in structure; nonetheless, failing to ap- 
preciate the full bearing of this clue, we tried to find a con- 
straint on the complete problem that would lead to the 
Hirshfeld-Pawley result by a linear calculation. As ought to 
have been anticipated, the tantalizing prospect of achieving 
this in the least-squares calculation simply by applying the 
linear constraint that S be antisymmetric and then making 
its three remaining components vanish by adjusting the three 
components of the origin vector is illusory: although the sym- 
metric and antisymmetric parts of S transform independently 
under rotations of axes, they do not do so under shifts of 
origin, and the scheme fails, leading to a certain non-zero sym- 
metric S where zero S is desired. Altogether, it is clearly both 
better and easier to determine L, S, and T fully, imposing 
only such constraints as follow from site symmetry. 
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Shi f t  o f  origin to symmetr i ze  S and minimize  Tr(T) 
We require that  u and ~, (and therefore U and L) 

be invariant  to shifting the origin by the vector ~, so 
that  the old origin-to-atom vector r and the new one 
r 0 are related by r = r  0 + ~.  

The condition on ~, is direct (~o = 7,) but the condition 
on u induces the t ransformat ion t - + t  0 which in turn 
induces those for S - + S  o and T - + T  0. Keeping only 
linear terms in 2 and using the abbreviated dot nota- 
tion e : r~ ,=r  x ~, analogous to the D .  r o f ( l ) ,  we then 
have 

u = - e  : r ~ , + t = - e  : ( r 0 + e ) ~ , + t = u 0 = - e  : r 0 ~ , + t  0 . ( 8 )  

The abbreviated notat ion (e.g. Drew, 1961 ; Goldstein, 
1950, p. 148) is illustrated by the following parallel, 
equivalent ways of writing 7, x r:  

~ , x r - e  : ~ , r - r .  e .  ~,-~,r : e - - - e  : r ~ , - - - - ~ , . e . r  
= r~, : e  

(X x r)~ -- e~k2srk -- rkek~j2j -- 2~r~ej~ -- -- e~klr~2j 

= 2je~krk----- -- rk2jekj~, 

the minus signs arising by virtue of  the ant isymmetry  
e ~ . e = - e ~  of  e. The notat ion is compact  and sug- 
gestive, and can always be checked by writing in the 
implied indices; it is further described in the Appendix.  
Compar ison  of the last two members  of (8) gives 

t ° = t - e  : ~ , = t + ~ , ~  : e .  (9 )  

By adjoining ~, in (9) and averaging we then obtain 

S ° = S + L ~  : e ,  (10) 
with 

(L~ : e ) n = L i ~ c e y ~ a .  

From (9) we also obtain TO: 

T ° - t b t °  = (t--e--~7,)(t  + ~,~ : e )=  

T - e : ~ S - ( e : ~ S ) ' - e : ~ L ~ : e ,  (11) 

the t ransposed term (e : ~S)' arising from 
. . . . . . . . .  

(tE~ : e)~i = t i2g~ex~ =-- 

S ~ z e x ~  = - e~x~Sx~ = - (e : ~S)~t. 

The expression for U, 

U = T -  e : rS - (e : rS) '  - e : rLr  : e ,  (11 a) 

is analogous in structure to that  for T o given in (11); 
it is of  course equivalent to (7). 

F r o m  (10) and (e : S ) ~ = S I g - S x I ,  k - j = j - i = l  
(rood 3), the condition that  S o be symmetric,  S 0 -  S ° ' =  
0, is then 

e : S 0 = e  : S + e  : (L~ : e ) = 0 ,  (12) 

and the same condit ion arises on requiring that  
Tr(T °) = T°~ = T o : fi be an extremum with respect to 
arbi t rary variations of  ~. This follows on summing the 
diagonal  elements of (11) to obtain 

T O : 6 = T  : 6 - 2 ~ .  e : S - ~ .  e : (L~ : e) (13) 

and taking the s tandard variation, here symbolized by 
A to avoid confusion with 6, 

- A T  0 : 6 = 0 = 2 A ~ .  e : S + 2 A ~ .  e : (L~ : e ) ,  

the factor 2 in the second term on the right arising 
from the symmetry  (L = L') and quadrat ic  character of 
e : ~L~ : e. The desired result is then obtained by solv- 
ing 

e : S = - e  : (Le : e )=  (L : 6 6 - L ) .  ~ ,  (14) 

which is identical with (12).* 

The solution of (14) is 

~ = ( L  : ~i6 -L)  -1 . e : S ,  (15) 

which in terms of  the principal axes of L reduces to 

QI = ( S J K  -- S K j ) / ( L j j  + L K K )  , 

K = J + I  = I + 2  (mod 3) .  (16) 

The extreme trace is seen to be a min imum by sub- 
stituting from (14) and (16) into (13) to give 

T O :fi = T  : f i -  o.e :S = T  : ~ -  X ( S j K  - S K j ) Z / ( L j j  + LICK), 
I 

again in the L axes with K = J +  1 = 1 + 2  (rood 3), all 
the terms in the sum being positive unless S is sym- 
metric, whereupon they vanish and T : 6  cannot  be 
reduced further. 

Non-intersecting rotation axes  

The preferred reduction of the average mot ion  is 
achieved by rotating to the principal axes of  L and 
shifting to three generally non-intersecting displaced 
axes of  libration, each used for one of  the principal 
directions of  l ibration and chosen to eliminate the off- 
diagonal part  of  S. The diagonal components  of  S are 
then accounted for by regarding the eigenvalues of L 
as representing independent rotations, each with a 
screw component .  Finally, T is appropriately reduced 
to keep U invariant  and is referred to its own principal 
axes. The picture is thus one of six independent  simple 
motions.  Labelled according to the principal axis of 
l ibration involved (Fig. 2), the shifts of axis a~ and new 
position vectors JR are given by 

JQI = r1 - J R I  = elJ  K S j  K / L j j  

(no summation,  I # J # K )  (17) 

in consequence of  the conditions that  the shifted off- 
diagonal terms of S should vanish, 

J S j K = S j K + ( L J ~  : e ) S K = 0 ,  K # J  [see (10)]. 

(No values of  JQj are defined" the diagonal terms of  
S as referred to the principal axes of  L are independent  
of  shifts in origin and so cannot  be removed.) 

* The result (L:66-L).0 can be calculated directly from 
the components. It also follows from the vector identity 
A ×(B ×C)=A.CB-A.BC and recourse to the average- 
dyad character of L: 

- e: (Lo :e) = - e: (XX x O) = - X x (X X O) = ~ : ~ , 0 -  Xg.O 
. . . . . .  

=Z~, :80-L .o=(L:88-L) .o .  
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The U may then be rewritten as 

Uzs=rTss s 2 r 2 (18) + Lss R K  + L r r  ~ s ,  
and 

Usa = r T H -  L r r r R s  rRJ  - SnZRg + S s / R K  , 
K = J + I = I + 2  (mod 3) (19) 

with 
rTl I= TH--  X S2z/LKK (20a) 

K¢I 
and 

r Z l j =  Z I j -  z~, SKISKJ/LKK , Jv~ I , (20b) 
K 

where, as for all expressions in this paragraph, the axes 
parallel to the eigenvectors of L are implied. (Note 
that in el?the trace and indeed the separate diagonal com- 
ponents of T have been minimized with respect to the 
axis displacements - the terms in the decrements are 
always positive until the stage Sis = 0, i C j, is reached. 
Moreover, rT :fi is lower than the reduced T :5  of 
the origin-shift method, which symmetrizes the off- 
diagonal part of S but does not make it vanish.) Ex- 
plicit reference to S can then finally be removed by 
defining the screw pitches as: 

as = SHILH . 

It remains to remark that the shifted axes are inde- 
pendent of the arbitrary initial origin, and that the 
indeterminacy of the trace of S, S :5, affects the re- 
duced T but obviously not the axis shifts [see (17)]. 
The uniqueness of the JRs is shown by a short calcula- 
tion suppressing the summation convention and recal- 
ling that L I j  = 0 holds in this axial system: 

r = r o + ~; JRs = r s -  e l J K S j K / L j j ;  j l~o  _ ,.o "I -- ~I -- 
' e I jKS°K/Lj j  = r s -  Os - e l jK(SjK + L j jO le IJK) /L j j  = 

JR.r -  Os + Os = J R I  . 

The effect of the indeterminacy of S : fi on the reduced 
T is evident from the presence of terms in Sn,  SEE, 
and S33 in the expressions (20b) for rT~ s, T being well 
determined to begin with; these terms are compensated 
in the expressions (19) for the Uts by the terms linear 
in ~Rg, so that the Uij are indeed unaffected by the 
indeterminacy of S : &  However, this indeterminacy 
must be removed, by imposing a systematic restraint, 
so that the reduced T will not itself be indeterminate. 
The recommended constraint is S : fi = 0 because it is 
affected by neither the translations nor the rotations 
of coordinates employed in the solution and so can 
safely be imposed at the very beginning in the least- 
squares fit. These properties can be shown at once from 
(10), noting again that in the L-axial system L~s=0 
( iCj)  so the second term on the right side of (10) van- 
ishes for S~I (etc.) and that S :5  is invariant to rota- 
tion of axes. The constraint S : fi = 0 is free of the pos- 
sible ambiguity of assignment that might afflict such a 
constraint as, say, $33 = 0  (in the L-axial system with 
LH->L22>--L33) when there is symmetry-imposed de- 
generacy or accidental near-degeneracy of the eigen- 
values of L. 

Consequences of site symmetry 

We now require of L - ~ ,  S = ~t, and T = t t  (as well 
as u, t, and ~, which will also be of interest) that they 
be invariant to the operations of site symmetry. The 
familiar case of a quadratic form then applies to L and 
T, but S is somewhat different because ~ is an axial 
(or pseudo-) vector" if P and Q are the matrices re- 
presenting the transformation of a vector and a pseudo- 
vector by an operation of site symmetry, t---ut=Pt, 
~,--->~,=Q~,, Q is the same as P for a proper rotation 
but is equal to - P  for an improper rotation. One then 
has ~ = Q~.(Pt) = QSP' = S, which leads to the require- 
ments summarized in Table 3 for the crystallographic 
elements of point symmetry and in Table 4 for the 
crystallographic point groups. [Some of the informa- 
tion in Table 4 can be found in Table 26 of Nye (1957).] 
For an n-fold rotation, the transformation goes 

P =  c , c=cos  2n/n, s = s i n  2n/n ,  

0 

[c2Sll + s2S22- sc(Sn + S21) 
= [c2S21-s2S~2+sc(Sl~-S22) 

t cS31 - SS32 

c 2 S n -  s2S21 + sc(S~ - $29 cS~3- sS23\ ,  

c2S22 + $2S11 + sc(S12 + S21) cS23 + $813 / 

cS32+sS31 S33 i 

and for an n-fold rotatory inversion the sign of ~ is 
changed, whereupon all the results follow by straight- 
forward but somewhat tedious calculation. 

L5 5 

U 

(x,v,z) 

Fig. 2. The three non-intersecting axes parallel to the principal 
axes of L. The displacement of each axis (J) parallel to 
another axis (I) is shown as J0z. The X and Z coordinates 
relative to axis 2 are shown for a point (x,y,z). 
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Table  3. Requirements imposed by the several symmetry elements* 

Element ~. u, t, Sa 

1 (~) (~) 

3,4,0 (~) (~) 
(~) o 

~:~ (~) (~) 
(~) g = 3 x i  0 

(~) o 

(~) 6 = 3 x h  0 

2, horizontal, ( i )  ( i )  
along axis 1 

m, _l_verticalaxis 1 ( ! )  ( i )  

3cub~ (!) (i) 
orientation]" 

Ss S 

(il 1~ ~ ) ( ~ l  1~ 13) 
2 22 23 21 22 23 
3 23 33 31 32 33 

(l il '~o ~°) (~i~ ~1~o ~°) 
C i o o )  (11 ~ ° o) 

11 --12 11 
0 33 0 0 33 

0 0 

(Oo oOli) ~ (o 
13 23 31 

o li) 0 2 
32 

0 0 

(1~ 12 ~) (l~ 12 
1 - 1 1  1 -11  

0 0 i) 
0 0 

(li o ol (li 0 01 22 2 22 2 
2 3 3 3 , /  3 2 3 3 /  

\13 (101200 l i )  \31(021200 l i )  

(ll ~ l ~ ) ( i l  1~ ~) 
12 11 12 3 11 12 
12 12 11 2 13 11 

* For tensor components referred to a Cartesian coordinate system with axis 3 parallel to the indicated symmetry axis. Non- 
zero entries imply non-vanishing components, and identical non-zero entries, in any array, reflect symmetry requirements: S~j, 
for example, is indicated by ij, -S~j by -ij, etc. The arbitrary requirement Tr(S)=0 is not imposed here. The results quoted here 
and in Table 4 for ~ and }'are representative of time-averaged (or lattice-averaged) axial and polar vectors respectively. 

........... 

(O~o ~) () ( )  ( ~) 0 0 ,~-2 t2 22 23 
= 31 t P = Q  ; S =  23 ta = 32 33 

0 21 tl 12 13 ll 

Cl - 1 

G - i  

C2--2 

Table  4. Site-symmetry requirements imposed by the crystallographic point groups( a ) 

u, t, Sa U, L, T ~ S 

1 2 2 2 2 3  2 1 2 2 2 3  
1 3 2 3 3 3  3 1 3 2 3 3  (1~ 1~ 1~)(~) 

0 1 2 2 2 2 3  0 
1 3 2 3 3 3  

Point group Comments (o) 
The general case considered 
at length in the foregoing 
discussion. 

Corresponds to Cruick- 
shank's treatment. 

Each axis can have a helical 
component. S12 and $21--+0 
by tranformation to axes at 
different heights, still inter- 
secting 2. Third axis along 2. 
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Table 4 (cont.) 

Point group 

Cs - m 

C 2 h  - -  2/m 

D2 - 222 

C 2 v  - -  mm2 

D2n - m m m  

C4-4,  C3-3,  C6-6  

s4-~ 

C4h - 4 /m ,  Cai - ~, 
C 3 h  - -  

C6~ - 6 / m  

D4 - 422, D3 -- 32, D6 - 622 

C4v - 4 m m ,  Car -- 3m, C6v - 6 m m  

D 2 a  - 7~2m 

D3n - 6m2  
D4n -- ( 4 / m ) m m ,  Daa -- ~m,  

D6n - ( 6 / m ) m m  

T -  23, O -  432 

T h - - m 3 ,  T a - ~ 3 m ,  O h - m 3 m  0 

u ~ , g a  U , L , T  ~ S 

( i )  (1 !  12 0 ) 1  220 33 ( i ) ( 0  0 l i ) 3 1 0  320 2 

(1!1~ o) (i) 0 1 22 0 
0 33 

( ~ i )  (11o) 11 00 0 0 2 2  0 0 2 
33 0 0 33 

(i) (ii~iai) 0 (~i~ii) 
0 ( 1 ~ )  0 0 

(i) Ci!o  0)1 ~3 (i) (1~1~0111~0 3~°°)~' 
(lii°°) (!) C! 1~i)~' 0 1 1 --11 

33 0 

0 (1!  l i  330) ( i )  0 

C i i )  (li ° °) '~' 0 1 0 0 11 
33 0 33 

11 0 to) (i) (Oli~i) o (_~!1io) 
C!i °) C! o!)~,~, 0 1 0 --11 

33 0 

o (1~1~) o o 

o (lilili) o (lili~i) ~, 
(1~,~) o o 

Comments(b) 

No helical components. $13 
e tc . - - ,O  by displacing two 
axes in the plane and the 
intersection of the third 
with the plane. 

Unequal helicals intersect- 
ing at origin of D2. 

Two axes normal to the two- 
fold axis, not at same level. 

Two axes normal to sym- 
metry axis at same level, 
with equal helicals. 

Two equal and opposite 
helicals, equally and op- 

m 

positely displaced along 4 .  

Two equal helicals through 
origin. 

No helicals; axes normal 
to axis 3 at same level. 

Equal and opposite helicals 
normal to 4 through origin. 

(a) For settings with principal symmetry axis along axis 3 and secondary axis (if any) along axis 1 of a Cartesian coordinate 
system. In general, the description will vary with other orientations. The convention of Table 3 is used for indicating tensor 
components. The arbitrary requirement Tr(S)= 0 is not imposed here. 

(b) The axes referred to in these comments are the displaced axes of effective uncorrelated screw rotation [equation (17) and 
Fig. 2]. In so far as is required by symmetry these axes conform in direction to the Cartesian system specified in the preceding 
footnote and are numbered accordingly, rather than in the order of their eigenvalues. 

(c) Invariant to rotation about the principal axis. The cases S = 0 and S--$116 are of course invariant to every proper rotation. 
(d) S varies with azimuthal orientation of the coordinate system as follows, with 0 the angle of rotation from an arbitrary 

starting orientation and 00 the angle of rotation away from the principal azimuth defined by $11 =0Sll and $12=0. 

~11=$11 cos 2 0 - $ 1 2  sin 20=0Sxl cos 200 
~12=$12 cos 2 0 + $ 1 1  sin 20=0Sll sin 200. 

Note that at various orientations this can make either the helical components or the displacements of the axes vanish. 
(e) Here 0= 0, 45 o, 90 o, etc.  are the only natural values to consider. 



V E R N E R  S C H O M A K E R  AND K. N. T R U E B L O O D  71 

It is perhaps easier simply to consider each compo- 
nent of S as a pair of physical entities - a circular cur- 
rent loop ~ corresponding to 2i and an ordinary vec- 
tor for t~ - and to visualize how it is affected by the 
symmetry operations. Because this still requires cal- 
culation for a three- or six-fold rotation, it is helpful 
to note that, like any second-rank tensor, S may be 
written as the sum of a symmetric part (Ss) and an 
antisymmetric part (Sa); Ss transforms like an ordinary 
quadratic form under proper rotations, while Sa is equi- 
valent to (;~ x t)/2, which is indeed a true vector dis- 

. . . .  

placement with components (~. x t)~/2 = ( S j g -  Ski)~2 = 
(Sa)lk---(21tk-2kt~)/2, ( i , j ,k  cyclic). This vector can be 
interpreted as the average displacement of t that would 
follow from the correlated rotation ~, if the rotation 
were about the lattice-fixed initial origin of coordinates. 
Expressed in terms of its principal axes, Ss consists of 
three principal screw correlations 21tz and has some 
rather surprising possibilities for symmetry because of 
the special character of ~. and the absence of any re- 
quirement that the eigenvalues all have the same sign. 

Errors in bond lengths 

Cruickshank (1956b, 1961) has treated an important 
consequence of rigid-body libration, namely that bond 
lengths will appear foreshortened. Because his deriva- 
tion presumes that the center of libration is known, 
it at first seemed that his foreshortening correction 
might be significantly altered by our recognition of the 
role of S, for example in terms of three non-intersecting 
axes rather than a single center. In fact, however, the 
non-intersecting axes are irrelevant, and Cruickshank's 
result is essentially correct when applied to intramolecu- 
lar distances, although it is not always (or even usually) 
applicable to atomic positions. 

Busing & Levy (1964) have thoroughly discussed the 
general effect of thermal motion on bond lengths esti- 
mated from diffraction measurements, emphasizing 
that the joint distribution of the motions of the atoms 
must be known or assumed if proper corrections are 
to be made. Rigid-body motion is a specific case for 
which the joint distribution is well defined. It is worth 
noting that incautious use of Cruickshank's procedure 
for correcting position parameters of atoms may lead 
to erroneous conclusions about intermolecular dis- 
tances, e.g. from a rigid-body atom to an atom which 
is not part of the rigid body. The distance between the 
'corrected' positions of such a pair of atoms may be 
either larger or smaller than the average distance be- 
tween them, whereas the distance between the average 
positions is never more and usually is less than the 
average distance. As Busing & Levy strongly empha- 
sized, this latter difference between the mean distance 
and the distance between mean positions depends al- 
together on the joint distribution of atomic motions, 
which is not of course generally known. To re-empha- 
size: in extreme cases, the 'corrected' distance can even 

be the maximum (highly unlikely) or the minimum (al- 
most as unlikely) instantaneous separation of the 
atoms, with no precise a priori relationship to the 
properly averaged separation, whereas the uncorrected 
distance (the distance between average positions) is 
never greater than the true average distance and is in- 
deed smaller unless the perpendicular motions of the 
two atoms are completely correlated (i.e. in phase) and 
of the same amplitude. 

For the estimation of corrections to intramolecular 
distances, we have not used the position of the maxi- 
mum of a Fourier peak, as Cruickshank did, but have 
instead considered only the average position of an 
atom, ~=r+ f i ,  which could be measured from an iso- 
lated Fourier peak and in many cases may be more 
nearly what follows from a least-squares refinement. 
The consideration is an approximation of which the 
accuracy must be assessed and depends both on the 
rigid-body assumption and on assignments of origin 
for rotation and translation. For some sites, as shown 
in Tables 3 and 4, symmetry requires the vanishing of 
~, and i, or some of their components, and for these 
coordinates it is obvious enough to take the average, 
namely zero, as the origin of measurement in the dis- 
cussion. It is perhaps not so obvious that the general 

E 

conditions ;~=0 and i = 0  are in fact appropriate, but 
they seem to be and they lead simply enough to an 
evaluation of p in terms of the average rotational tensor 
D, which is known in useful approximation from L as 
derived from the observed U's. Specifying that ~. and t 
are of the order of an infinitesimal e, i.e. 0(e), we recall 
expressions for the instantaneous displacement, u, and 
instantaneous position, p, relative to a lattice-fixed 
origin in the forms 

p = r + n = r + t + D ,  r, with 
D = - e .  ~. + ½(;~,- ~.~, : ~i~i) + 0(e3). [(3a) restated] 

The conditions ~= ~.--0 then lead directly to 

r = p - i - ~ ,  r=P+½(L  : ~i~i-L). r- l -0@3) . 

The L used here is based on the observed U's by means 
of 

U - -  T -  e : p S -  (e : pS)' - e : pLp : e + 0(e3),  

in which the explicit error term, 0(e3), is of lower order 
than either of the errors 0(e 4) implied by the use of p 
instead of r, as required by (1 la) [terms of second order 
in e everywhere multiply ~ - - r = 0 ( e 2 ) ]  o r  the errors 
D .  ( p - r ) = 0 ( e  4) induced by writing p for r in D . r .  
The result for r accordingly also holds in the form 

r = ~ + ½(L : l i~i-  L ) .  ~ + 0(e3). 

Subtracting, and writing r ( j ) - r ( i ) = r ( i j ) ,  etc., then 
gives 

r ( i j )=p( i j )+½(L : ~i~i-L). p(ij) +O(e 3) (21) 

for the interatomic vector relating atoms i and j in 
the rigid molecule at the reference orientation ~,=0. 
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Consequently, to the accuracy of this result, the intra- 
molecular interatomic distance is 

Ir(ij)l = Ir(ij)l = I~(#')1 
+½~(ij). (L • ~ i~-L) .  p(ij)/IP(ij)l. (22) 

It is as if the molecule had shrunk independently in each 
of the three principal directions of L, in terms of which 
(L : f ig-  L)~t of course vanishes for k ¢ I. For example, 
the shrinkage in the first direction is ~n(ij)(L22 + L33)/2. 
To restore the actual dimensions corrections therefore 
have to be made in accordance with (21) to every co- 
ordinate of every atom. Any corrected intramolecular 
distance can then be calculated directly or it can be 
evaluated by (22), by finding the component, along the 
interatomic vector, of each principal coordinate cor- 
rection and adding these to the original distance. When 
the correction term of the equation which Busing & 
Levy (1964) give under the heading Molecular Libration 
is written (and summed) for the three principal axes 
of L ,  the result is equivalent to (22). 

It should be noted from (22) that the average change 
in an intramolecular distance depends only on L=k'~ 
and is independent of any question of axes or center 
of rotation. It becomes somewhat simpler after trans- 
formation to the principal axes of L, whereupon 
Cruickshank's (1956b) picture of the foreshortening 
would again be seen to be directly applicable, but this 
is not required. His result for the foreshortening 
[Cruickshank, 1956b, equation (11)], 

1 ( s 2 t 2 ) 
2r l + sZ/q2 + l + [-~/qZ ' 

or his more general expression [Cruickshank, 1961, 
equation (10)], agrees with ours to the second order 
in small quantities (our 2~, and his s 2 and t 2) for large 
enough q in the cases with a well defined center of 
rotation and for the special orientations of coordinates 
to which the cited equation applies. Moreover, the 
denominators (1 + s2/q 2) and (1 + t 2/q 2) clearly have the 
proper qualitative effect in reducing the shift of the 
Fourier maximum when the fundamental peak disper- 
sion, q, is no longer large compared with s and t, and 
a center of rotation is defined by symmetry, but it is 
not clear whether corresponding general expressions 
can be found or whether the implied accuracy to orders 
higher than second is realizable. The changes in intra- 
molecular distances derived here are at any rate only 
good to the second order. 

For the average distance between two atoms in dif- 
ferent molecules this formulation has nothing to say 
unless the cross-correlations of translation and libra- 
tion between the two molecules are known. If it can 
be assumed that these cross-correlations vanish, it is 
best at the present level of approximation to calculate 
the average distance from the average interatomic vec- 
tor and the two U's without regard to the rigid-body 
assumption. This gives 

1~+=l~l+½U : ~illPl +0(c3) (23) 

and 

Ipl--IPI+½U :~i/l~l-½~. u .  ~/1~13-1-0(~3), (24) 

where p and U are here to be interpreted as the vector 
p ( j ) -p ( i )  from one atom to the other and the sum 
U(i) + U(j) of their displacement tensors. Equation (23) 
is equivalent to the result for non-correlated motion 
given by Busing & Levy (1964). 

Examples 
The analysis described here has been programmed in 
FORTRAN IV and applied to a variety of data on 
an IBM 7094 computer. The program is available from 
the ACA library (No. 1). Our results on five mol- 
ecules in four different structures include a comparison 
(Table 5) of Cruickshank's method and the present one 
for the two independent molecules of cyclopropanecar- 
boxamide (CPCA) in the asymmetric unit of the mono- 
clinic crystals of this extensively hydrogen-bonded sub- 
stance (Long, Maddox & Trueblood, 1968); verifica- 
tion of independence of origin (Table 6), with data from 
the analysis of the structure of 1-methylamino-7- 
methylimino-l,3,5-wcloheptatriene (MMC) (Goldstein 
& Trueblood, 1967); and a comparison of the present 
method with that of Hirshfdd, Sandler & Schmidt 
(1963) for two fairly rigid hydrocarbon molecules (their 
analysis involved location of an assumed center of li- 
bration by an iterative least-squares process involving 
non-linear equations, as discussed above). Table 8 gives 
data on the origins defined by equations (16) and (17) 
and on the effective screw translations in the four crys- 
tal structures. Our present concern is to show the 
general features of the present treatment as compared 
with the earlier ones - the improvement in the fit of 
the U's, the lack of dependence of the derived motional 
parameters on the initial assumed origin, the sorts of 
variation in librational and translational tensors to be 
expected when one ignores the cross-tensor S, and the 
magnitudes of typical displacements of the non-inter- 
secting axes and the screw translations implied by the 
present treatment. Further discussion of possible inter- 
pretations of the relation of the individual results to 
the structural features of the corresponding crystals 
will be presented elsewhere. 

The r.m.s, deviation of the observed U~j from those 
calculated with the rigid-body parameters (corrected 
appropriately for the number of degrees of freedom) 
is given for each of the calculations reported in Tables 
5, 6, and 7; it is evident that this parameter is smaller 
by a factor of two or more when the present method 
is used instead of Cruickshank's original method, and 
is also significantly smaller when the present method 
is compared with that of Hirshfeld et aL The data in 
Table 6 confirm that this measure of the fit of the model 
is independent of the origin chosen, even in such an 
extreme case. Our computer program does not yet in- 
clude explicit provision for weighting the observational 
equations on the basis of the e.s.d.'s of the B~j and we 
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do no t  yet  have  a p roper  er ror  ma t r ix  for  the compo-  
nents  of  L, S, and  T, the axis d isplacements ,  etc. 

The ca lcu la t ions  repor ted  for  C P C A  in Table  5 il- 
lus t ra te  the sorts  of  devia t ions  in the magn i tudes  and  
di rect ions  of  the pr incipal  axes of  L and  T tha t  m a y  
arise when  C r u i c k s h a n k ' s  m e t h o d  is used and  the ori- 
gin is a s sumed  to be at  the center  of  mass.  Since l ibra-  
t ional  cor rec t ions  to the  a p p a r e n t  molecu la r  geomet ry  
depend  on  L, the large errors  possible  in it can  be 
par t i cu la r ly  t roub lesome.  

The  values of  L and  T ca lcu la ted  by C r u i c k s h a n k ' s  
m e t h o d  are m a r k e d l y  dependen t  on the origin chosen,  
as others  (especially Pawley,  1963) have no ted  before.  
Both  the magn i tudes  and  di rect ions  of  the pr incipal  

axes of  the a p p a r e n t  L vary  great ly  (see the uppe r  pa r t  
of  Table  6) when  the or igin  is a s sumed  to be far  f rom 
the molecule .  As  is ent i re ly  reasonable ,  l ib ra t ion  a b o u t  
the axis paral lel  to the 'vec tor  of  d i sp lacement '  of  the 
or igin is then  all t ha t  remains  significant,  since any  
apprec iable  needed ro t a t ion  a b o u t  any  d i rec t ion  nor-  
mal  to this  vector  would  be accompan ied  by a grea t ly  
exaggera ted  and  una l lowab le  t r ans la t ion  of  the mol-  
ecule. (In the present  me thod ,  S and  T toge the r  com- 
pensa te  for  this  t r ans la t iona l  aspect  of  l ib ra t ion  a b o u t  
a d i s tan t  a s sumed  origin.)  Thus ,  the  di rect ion of  the 
axis of  m a x i m u m  a p p a r e n t  l ibra t ion  repor ted  in Tab le  6 
shif ted 74 ° to a pos i t ion  on ly  6 ° f rom the vector  o f  
d i sp lacement  when  C r u i c k s h a n k ' s  m e t h o d  was used, 

Tab le  5. Comparison of  some results for cyclopropanecarboxamide* in terms of  the eigenvalues 

[,S'(,d U~l)2/(n - s)] * 

L 

and eigenvectors of  L and T 

Molecule A Molecule B 
Angular Angular 

Cri" S & Ti" deviation. + Crt S & Tt  deviation+ + 
0.0088/~,2 0.0020 A2 0-0101/~2 0.0030 A2 

51 (0)2 93(o)2 39 ° 69(0) 2 92(0) 2 43 o 
36 27 35 40 26 43 
17 14 45 9 14 3 

0.046 A2 0.045 A2 49 ° 0.053/~2 0.053 A2 8 ° 
0"044 0"038 44 0"045 0-037 16 
0.036 0.031 37 0.032 0.032 13 

* Two independent molecules in P21/c (Long, Maddox & Trueblood, 1968); for each molecule, the initial origin assumed in 
each calculation was at the center of mass. 

1" Cr means Cruickshank's (1956a) method was used; S & T means the present method was used. The T given for the latter 
is the reduced T of equation (20). 

++ Angular deviation of the directions of corresponding principal axes for the tensors determined by the two different methods. 

Table  6. Effect o f  large displacement o f  initial origin on eigenvalues and eigenvectors for 
1-methylamino-7-methylimino- 1,3,5-cycloheptatriene* 

Cruickshank's method 
L 

Present method++ 

Initial origin 
at centroid 

[•(zJ Uij)2/(n- s)] ½ 

Initial origin Angular 
8.25 A from centroid? deviation§ 

16(0) 2 11 (0) 2 74 o 
14 1 22 
9 0 70 

0.055 A2 0.065 A2 23 o 
0.050 0.059 24 
0.041 0.032 14 

0.0058 A2 0.0109 A 2 

L 18(°) 2 18(°)2 0 ° 
12 12 0 
10 10 0 

T 0.054 A2 0.414 A2 67 ° 
0.049 0.276 77 
0.042 0.051 76 

[Z'(zl U, DE/(n-s)] ~ 0.0028/~2 0.0028 A2 

* One independent molecule in Iba2 (Goldstein & Trueblood, 1967). 
t The displacement was along the vector with direction cosines 0.656, 0.542, 0.526, just 6 ° from the direction of maximum 

libration as calculated by Cruickshank's method for the displaced origin, and only 2 ° from the direction of the minimum eigen- 
value of the unreduced T calculated by the present method. See text. 

1: The T given is unreduced; the reduced T [equation (20)] was the same for each initial assumed origin, and had eigenvalues 
of 0.052, 0.048, and 0.042 A2. Its axes deviated an average of 5 o from those calculated with the centroid origin by Cruickshank's 
method, and an average of 8 o from those calculated with the centroid origin by the present method. 

§ Angular deviation of the directions of corresponding principal axes for the tensors determined relative to the two different 
origins. 
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and the other two l ibrat ional  mot ions  essentially van- 
ished. T changed also, but  considerably less. This is 
of  course an exaggerated example, but it serves to il- 
lustrate the advantages of  the present method of  cal- 
culation. As the lower part  of  Table 6 shows, when 
L is properly calculated it is completely independent  
of  the origin assumed initially, as are the reduced T 
of  equat ion (20), the corresponding reduced S, the 
various quantities of  Table 8, and (most impor tan t  of  
all) the goodness of  fit (Table 6). On the other hand,  
the unreduced T and S necessarily depend on the choice 
of  origin, as indicated in the earlier discussion. For  
example (Table 6), two of  the eigenvalues of  T become 
very large when the origin is moved far away, and cor- 
respond to directions approximately normal  to the vec- 
tor  of  displacement;  the third eigenvalue, more or less 
parallel to the vector of  displacement (deviating by 2 ° 
in this example) remains small. The explanat ion is 
simple: because L (as well as the instantaneous motions  

of  which it is in principle composed) is independent  
of  the origin, large values of  S and T, corresponding 
to large translat ions of  the origin strongly correlated 
with the rotations,  are necessary to keep the a tomic  
displacements reasonable by compensat ing for  the 
t ranslat ional  (librational) aspect of  the rotat ions.  I t  is 
this strong dependence of  S and T on initial choice 
of  origin that  makes desirable some sort of  canonical  
reduction of  S and T by means of  a shift to a uniquely 
defined origin. 

For  the examples in Table 7, Hirshfeld's origin-re- 
finement method  did not  yield good values for the li- 
bra t ion tensor. Both the magnitudes and directions of  
the principal  axes (and hence of  any molecular  geo- 
metry corrections dependent  on them) vary appreciably 
f rom those obtained by the present method for benzo- 
[c]phenanthrene, which is presumably a fairly rigid mol- 
ecule and hence appropria te  for the present analysis, 
perhaps more appropriate  than  cyclopropanecarbox- 

Table 7. Some results for benzo[c]phenanthrene (BPh) and 1,12-dimethylbenzo[c]phenanthrene (DMBPh)* 
BPh DMBPh 

Present Angular Present Angular 
method HSS deviation method HSS deviation 
17.4(0) 2 12-7(0) 2 39 ° 5-3(°) 2 5.4(°) 2 11 ° 
7.4 6.8 83 1.5 -0.3 11 
5.2 1.6 85 1.3 1.4 (0) 

0.041/~2 0.040/~2 7 ° 0.0102 A2 0.0105 A2 2 ° 
0.032 0.033 13 0.0086 0.0078 (0) 
0.025 0.026 13 0.0076 0.0083 2 

[Z(A Uij)2/(n-s)]* 0.0030/~2 0.0058/~2 0.0021 A2 0.0024 A2t 

* Eigenvalues and deviations of eigenvectors as in Table 5. BPh has one independent molecule in P212121 ; DMBPh lies on a 
twofold axis (parallel to L3 and T2) in Pban. These hydrocarbons were studied by Hirshfeld, Sandier & Schmidt (1963) (HSS), 
whose results were obtained by refining a 'center of libration' (see also Table 8). The dimethyl derivative was analyzed at about 
80°K. The T given for the present method is the reduced T of equation (20). 

t The fit of the dimethyl compound by HSS omitted the two methyl groups because they appeared to give wide discrepancies; 
our analysis included all atoms, and the fit was not significantly worse for the methyls than for some of the other atoms. 

Table 8. Symmetrizing origins, coordinates of displaced axes, and effective screw translations* (1~) 

CPCA CPCA 
Molecule A Molecule B MMC BPh? DMBPh'J" 

01 - 0.70 - 0.72 0.38 0.88 (0.87) 0 
02 0.28 -0.25 0.33 -0.15 (-0.37) 0 
03 0.11 0.07 -0.12 0.36 (1.13) 0-43 (0-72) 

201 - 0.50 - 0.80 0.42 0.78 0 
301 - 1.07 "0.59 0.33 1.03 0 

102 0.33 - 0.23 0.52 - 0.10 0 
302 -- 0.05 - 0.35 - 0.04 - 0.33 0 

103 0"14 -- 0"02 0"08 0"13 0"82 
203 0.02 0.35 - 0.42 0.92 - 0.91 

O'l(Lll) ~ -0.022 -0.036 0.005 0.051 0.021 
o.2(L22) i- 0"028 0"025 0"002 -- 0"066 0"011 
o'3(L33) ~ 0"018 0"057 -- 0"009 -- 0"014 -- 0"054 

* See equations (16) and (17) and Fig.2. The molecules are those of Tables 5, 6, and 7. Coordinates are expressed relative to 
the center of mass (for MMC, the centroid) parallel to the principal axes of L. The effective screw translation is, as indicated, the 
screw pitch times the r.m.s, libration amplitude about the corresponding axis. 

I" The values in parentheses are those given by Hirshfeld, Sandier & Schmidt for their effective center of libration, transformed 
to the present axial system. 
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amide (which may have appreciable internal libration 
about the bond to the amide group). Hirshfeld's results 
for the 1,12-dimethyl derivative show smaller devia- 
tions, in part because the molecule lies in a special 
position (on a twofold axis), but they include a negative 
eigenvalue of the libration tensor that is eliminated in 
the present analysis. On the other hand, his T values 
agree quite well with ours. 

In Table 8, the coordinates of the origin that sym- 
metrizes S for each molecule [equation (16)] and the 
coordinates of the displaced (non-intersecting) axes 
[equation (17) and Fig.2] in the preferred alternative 
description of the motion have been expressed as dis- 
placements from the centers of mass (or, for MMC, 
the centroid) of the molecules. These displacements 
approach 1 A for each of the independent molecules 
of CPCA and, gratifyingly, for each molecule, the dis- 
placement is toward the amide group. In this structure 
each molecule is involved in four hydrogen bonds; 
interestingly, the L tensors are closely similar for the 
two molecules, and the axis of maximum libration for 
each is approximately parallel to a N - H .  • • O hydrogen 
bond from the molecule to a neighbor (of the other 
type). 

The displacements of the non-intersecting axes from 
one another, illustrated in Fig.2, may be calculated 
(for axes I and J) by taking the differences (ZQK-- J•K) 
in Table 8. They vary from 0.09 to 1.73 A, the latter 
value being for the only non-intersecting pair of axes 
(C2, Table 4) in 1,12-dimethylbenzo[c]phenanthrene. 
The upper lines of Table 8 permit also a comparison 
of the position of the origin that symmetrizes S with 
the origin found by Hirshfeld; for each of the four 
coordinates not fixed by symmetry, the displacement 
from the center of mass has the same sign for each 
method of analysis, and indeed some of the magnitudes 
are quite similar too, although of course no exact cor- 
respondence is to be expected. 

Table 8 also lists for each of the molecules what we 
have termed the effective screw translations, i.e. the 
products of the screw pitches a~ with the r.m.s, ampli- 
tudes of libration about the corresponding axes. These 
Values are appreciably smaller for MMC, for which 
(among these molecules) the Cruickshank treatment is 
more nearly applicable. However, it must be remem- 
bered that the individual screw pitches (and hence these 
effective screw translations) are arbitrary because the 
trace of S is arbitrary; the values we have given here 
correspond to our choice of the constraint Tr(S)=0.  

The development of this analysis was greatly facili- 
tated by the computer tests made possible by the gen- 
erous cooperation of the U.C.L.A. Computing Facility 
and the Union Carbide Computing Center in New 
York. The computing program used is an extensive 
modification of one based on Cruickshank's treatment 
that was originally written by P.K. Gantzel and C.L. 
Coulter. Robert Long assisted us in the computer tests. 
The illustrations were prepared by Maryellin Reinecke. 

Appendix 

Most of our symbols and conventions are listed here; 
a few have been omitted which appear only once and 
are defined in the text as they occur. Explanations of 
many of the symbols and conventions are given in the 
text; they are referred to here by citing the equation 
nearest to the appropriate discussion or definition. 

Conventions 

Transformation matrices are in plain roman. 
Vectors are in boldface, generally lower case (excep- 

tion JR). 
Tensors of second and higher rank are in BOLD- 

FACE, generally upper case (exceptions 6,e). For 
tensors of rank 2 boldface has usually been retained 
also for the matrix of the tensor, as in (2), for Tr(S), 
etc. 

Summation is assumed for repeated lower case indi- 
ces, (3a). 

Double scalar products, signified by :, are used in 
the sense originally defined by Gibbs (Drew, 1961), e.g., 

ab : cd = a~bjc~d s and (aB : eD)~m- alBj~cjD~m, (8). 
These products are by no means always associative; 
hence the parentheses in (12), for example. The Gibbs 
rule for multiple scalar products is simply to affix as 
many dummy indices on each side of the sign (., :, ", 
etc.) as there are dots in it, skipping no positions ex- 
cept by reason of a prior assignment (and parenthesis), 
and ordering the dummy indices in the same left-to- 
right sequence on each side. In the alternative common 
('nesting') convention, the ordering of the dummy in- 
dices is opposed on the two sides of the sign, right-to- 
left on the left and left-to-right on the right. This con- 
vention could just as well have been used here and 
might have offered some extra convenience. 

Superscripts 

' indicates transpose, thus: Ajk=A'kj ,  (3). 
0 indicates the value after shift to new origin, e.g. T 0, 

(8). 
r indicates 'reduced' quantity, e.g. rT, (20). 
^ indicates the value after the transformation implied 

in the context, e . g . S .  

~,P,7 
a, b, c 
A 
B 
D 

Symbols for quantities 

See ~ below. 
See t below. 
See (6). 
See (6). 
See (1), (2), (3). 
The unit tensor of second rank (J~j is the Kro- 
necker delta), (3a). 
Indicates small variation in a quantity in (14); 
zl Ulj in Tables 5, 6, and 7 means the difference 
of the experimentally derived U~j and those cal- 
culated from rigid-body parameters. 
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e The Cartesian permutation tensor, with compo- 
nents eij~, (3a). 

e See 0(s n) below. 
G See (7). 
H See (7). 
i,j, k, l, rn; I, J, K: Indices, usually used to designate dif- 

ferent mutually orthogonal directions. 
L The libration tensor (Cruickshank's t~). 
k The general rotation vector (1) of magnitude 2, 

with components represented as 21,~.2,~3 or, in 
(2) and Table 1 only, ct, fl, ~. 

0(8 n) means terms of the order of s n as e approaches 
zero, (2), (21). 

p Instantaneous position vector of an a tom.  
P,Q Transformation matrices. 
r The position vector of an atom relative to an 

arbitrary molecule-fixed origin, with components 
represented as rl,r2,r3 or x ,y , z ,  (1), (7). 

e An origin-shift vector, (8). 
J0z Displacement of axis J parallel to axis I; see (17) 

and Fig. 2. 
JR New position vector of an atom after the axis 

shifts in the displaced-axes description, with com- 
ponents represented as JRI or JX, JY,  JZ.  See 
(17) and Fig.2.  

S The tensor of correlation of translation and rota- 
tion, (6). 

Sa, Ss The antisymmetric and symmetric parts of S; see 
the section on site symmetry. 

JSjK is the value of SjK after the displacement of axis 
J, and equals zero if (17) is used. 

az The screw pitch along axis 1, defined shortly after 
(20). 

T The translation tensor, (6). 
rT The reduced translation tensor of (20). 
t The general translation vector (6), with compo- 

nents represented as h, t2, t3 or, in Table 1 only, 
a, b, c .  

Tr(X) = X~ = X : ~i, the trace (sum of diagonal elements) 
of X .  

U The mean-square displacement tensor for an 
a tom.  

u The instantaneous displacement of an atom (as a 
consequence of molecular motion).  

x , y , z  See r above. 
X, Y, Z See JR above. 

Use of general axes 

The formal analysis looks almost the same if the usual 
crystallographic axes a~ and reciprocal axes a ~ are used 
instead of ordinary Cartesians: one only maintains the 
general tensorial distinction between contravariant and 
covariant components, which is unnecessary in Car- 
tesian tensor algebra, and replaces ethic by eo'k = eijkl/g 
and elJ g = eij~/I/g, where g is the determinant of the 
matrix of covariant components g~j=a~, aj of the 
metric tensor; cf. e.g. Block (1962), McConnell (1957), 
or Spain (1956). However, in order to write observation 

equations, the U's, which have ordinarily been obtained 
as contravariant components in the Debye temperature 
factor exp( -  M) = exp( -  2rc2U: hh) = exp( - 2re 2 UlJhih~), 
would have to be re-expressed in covariant components 
by means of Uij=gt~gjtU ~ or ~., r, L, S, and T would 
have to be expressed in covariant rather than contra- 
variant components or the simple representation of the 
permutation tensor as eli e or e~jg would have to be 
replaced in the calculation by the more complicated 
~k = gJlgkm eilm = gt~e~ll~" At the same time the eigenvalue 
and eigenvector subroutines would also become more 
complicated, corresponding for example to the equa- 
tions 

L . x = l x  
with components 

L~jx~ = lgljxJ , 
and 

IZ~j-lg~jl =0, 

instead of the Cartesian 

L .  x = l x ,  L~jxj=lxi  and I L i j - l ~ t j l = O .  

Equation (22) for the foreshortening correction still 
holds if p and L are appropriately expressed, in con- 
travariant and covariant components respectively (or 
vice versa), but again it is not clear that it isn't better 
just to use Cartesian coordinates. 
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